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Abstract

The high performance of Deep Reinforcement Learning
(DRL) algorithms in complex tasks has increased the need
to ensure the robustness of the DRL against advanced ad-
versarial attacks. However, compared to a large volume of
studies exploring adversarial attacks that perturb Deep Neu-
ral Networks (DNN), adversarial attacks of disrupting DRL
have been significantly less explored. The existing adversar-
ial algorithms for DRL have focused on finding the opti-
mal time to attack a DRL agent. However, little work has
been explored in injecting perturbation attacks in input data
(i.e., adversarial examples) in the context of DRL settings.
In this paper, we propose efficient and robust perturbation-
based adversarial attacks to disturb the DRL agent’s decision-
making, called Momentum Iterative Randomized Fast Gra-
dient Sign Method (MI-RFGSM). We significantly refined
the Randomized Fast Gradient Sign Method (RFGSM) pre-
viously studied under DNN settings applicable under DRL
environments. We enhanced it further by incorporating mo-
mentum on each gradient update. We considered targeted or
non-targeted attacks under DRL with or without defenses to
investigate the efficiency, effectiveness, and robustness of the
MI-RFGSM. We conducted extensive experiments using the
Deep Q-Network (DQN), Deep Deterministic Policy Gradi-
ent (DDPG), and Proximal Policy Optimization (PPO) DRL
agents. Each DRL agent type was tested within appropri-
ate discrete (Atari Games) or continuous environments (Mu-
JoCo), comparing our MI-RFGSM against various state-of-
the-art DRL attacks in terms of attack execution time, aver-
age reward under defenses and attack success rate metrics.
Our results proved that our proposed MI-RFGSM attack out-
performed all of its existing gradient based counterparts. Our
results showed that MI-RFGSM is nine times faster than the
state-of-the-art Carlini & Wagner (CW) method while show-
ing the outperformance in robustness and giving a highly
comparable attack success rate within discrete environments.

Introduction
Deep Reinforcement Learning (DRL) algorithms learn poli-
cies to guide DRL agents to take optimal actions based
on an environment state. These algorithms have success-
fully achieved high performance on the various complex as
well as critical tasks, such as robotics (Amarjyoti 2017), au-
tonomous vehicles (Kiran et al. 2021; Ferdowsi et al. 2018),
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resource allocation (Yoon et al. 2021b), intrusion response
systems (Yoon et al. 2021a), various cybersecurity prob-
lems (Basori and Malebary 2020), or networking and com-
munication problems (Luong et al. 2019). As DRL has been
used to solve multiple problems as above, adversaries aim-
ing to disrupt the DRL process and misleading the DRL
agent’s decision-making have been known as a severe issue.

A policy, a probabilistic distribution of actions by the
DRL agent, is often learned by Deep Neural Networks
(DNN) to approximate the action-value function. The vul-
nerabilities of the DNN to adversarial attacks have been sig-
nificantly studied (Szegedy et al. 2013; Goodfellow, Shlens,
and Szegedy 2014a; Yuan et al. 2019) to mitigate the impact
when they are exploited by adversaries. Common adversar-
ial examples include adversarial perturbations impercepti-
ble to humans but fooling DNNs easily in the testing or de-
ploying stage (Yuan et al. 2019). Researchers have explored
various attacks and defenses for supervised DNN applica-
tions, such as image classification (Goodfellow, Shlens, and
Szegedy 2014a) or natural language processing (Alzantot,
Balaji, and Srivastava 2018). However, adversarial attacks
and defenses are largely unexplored in DRL environments.
DRL has numerous critical safety and security applications
and accordingly drew our attention to the need for robust
DRL. For robust DRL, there is a prerequisite of developing
efficient, effective, and robust adversarial attacks which can
evaluate the robustness of defense mechanisms.

Researchers have developed adversarial attacks in DRL
by answering the following two questions: (1) How to at-
tack? and (2) When to attack? The first how-to-attack ques-
tion is related to what perturbation method to use for disrupt-
ing the state during an episode. The second when-to-attack
question is associated with identifying an optimal time to at-
tack during an episode. In this work, we focus on answering
how-to-attack by proposing a novel scheme named Momen-
tum Iterative Randomized Fast Gradient Sign Method (MI-
RFGSM). To be specific, the goal of this work is to develop
robust and fast attacks by generating effective adversarial
states in DRL. In addition, we validate the performance of
the proposed MI-RFGSM by comparing it against those of
the state-of-the-art adversarial attacks under DRL with or
without defense where the attacker can perform targeted or
non-targeted attacks. We validated the performance of the
MI-RFGSM in terms of attack success rate metrics (ASR),



average attack execution time per perturbation (AET), and
average reward (AR) by the DRL agent via the extensive
comparative performance analyses.

We made the following key contributions in this work:
1. We develop the MI-RFGSM, which generates fast and

robust adversarial perturbations to compromise a DRL
agent under either targeted or non-targeted perturbation
attack. Where trained DQN, DDPG, and PPO algorithms
are utilized as the DRL agents within appropriate contin-
uous or discrete environments.

2. The proposed MI-RFGSM is an enhanced version of
RFGSM (Tramèr et al. 2017), Momentum Iterative
FGSM (MI-FGSM) (Dong et al. 2018), and Iterative
FGSM (I-FGSM) (Kurakin et al. 2016), to efficiently at-
tack the states of the DRL process.

3. We consider Robust ADversarIAL Loss (RA-
DIAL) (Oikarinen, Weng, and Daniel 2020), State
Adversarial (SA) (Zhang et al. 2020), and Alternating
Training of Learned Adversaries (ATLA) (Zhang et al.
2021) as a robust defenses and investigated the defensive
effect in DRL on the robustness of the MI-RFGSM
attack compared to those of the state-of-the-art attacks.

4. To validate the outperformance of the proposed MI-
RFGSM, we conduct extensive performance analysis to
compare the MI-RFGSM with the state-of-the-art adver-
sarial examples in DRL, including (Carlini and Wagner
2017; Goodfellow, Shlens, and Szegedy 2014b; Madry
et al. 2017; Dong et al. 2018; Xie et al. 2019), in terms
of ASR, AET, and AR. Among the existing adversarial
examples, we devised two baseline examples, which are
more robust and scalable, by extending the Diversity It-
erative FGSM (DI-FGSM) (Xie et al. 2019) and Momen-
tum Iterative FGSM (MI-FGSM) (Dong et al. 2018) used
in DNNs into DRL settings.

5. We consider state of the art attacks and defenses within
continuous and discrete environments. We consider tradi-
tional attack metrics and propose novel success rate met-
rics within continuous environments, which are currently
missing within the literature. We show MAE as a strong
metric in itself, as well as a powerful tool to perform fur-
ther statistical analysis on to create more accurate and
descriptive metrics such as Attack Sensitivity and Binned
Success Rate.

6. Our results show that our proposed MI-RFGSM outper-
formed overall in ASR, AET, and AR in discrete envi-
ronments of Atari Games played by DQN and RADIAL-
DQN. It significantly outperforms the Carlini & Wag-
ner method (CW) in AET while maintaining ASR and
AR comparable to other counterparts. In terms of ASR
and AR under the defense, MI-RFGSM outperforms the
state-of-the-art perturbation methods, proving its robust-
ness. However, for continuous environments of MuJoCo,
played by PPO and DDPG, MI-RFGSM was above av-
erage and was comparable to CW in some cases. CW
outperformed in such environments. We proved that MI-
RFGSM is fast and best in discrete environments with
and without the defenses whereas our best performing
baseline CW was not robust under RADIAL-DQN. In
summary, compared to other counterparts, we only give

here the results of DQN playing Atari Pong Game with or
without defenses: (i) ASR of MI-RFGSM under defense
for targeted attacks is 6% more than PGD, 7% more than
MI-FGSM, 27% more than DI-FGSM, 64% more than
FGSM, and 83% more than CW; (ii) AET of MI-RFGSM
under targeted attacks is 634 milliseconds (ms) faster
than CW, 46 ms faster than MI-FGSM, 21 ms faster than
DI-FGSM, and 12 ms faster than PGD; (iii) AET of MI-
RFGSM under non-targeted attacks is 865 ms faster than
CW, 40 ms faster than MI-FGSM, 37 ms faster than DI-
FGSM, and 19 ms faster than PGD; and (iv) AR of MI-
RFGSM is comparable with that of PGD while signifi-
cantly outperforming those of other baselines.

We have made our codebase available on github at follow-
ing links: DQN, PPO and DDPG

Related Work
This section provides a brief overview of the state-of-the-art
adversarial attacks in Deep Neural Networks (DNN), mainly
used for supervised deep learning. Table 1 contains a com-
prehensive comparison of previous work as well as our own.
More comprehensible comparisons between each section are
contained within Table 19 and Table 20 within Appendix A.
In addition, we briefly discuss existing adversarial attacks
which disrupt the DRL process and identify the differences
between our proposed MI-RFGSM and their approaches.

Backdoor attacks in Deep Neural Networks (DNNs).
Szegedy et al. (2013) initially presented an attack with
small perturbations leading to misclassifications. Later, re-
searchers have proposed various attacks and defenses and
evaluated their performance in terms of scalability, ASR,
and robustness. Goodfellow, Shlens, and Szegedy (2014a)
proposed the Fast Gradient Sign Method (FGSM), which
was efficient but showed less robust, not guaranteeing a
100% ASR. Carlini and Wagner (2017) proposed the Carlini
& Wagner (CW) method that guarantees 100% ASR, but it
was slow. Naı̈ve FGSM provided the basis to build more so-
phisticated and better variants of FGSM, including Random-
ized FGSM (RFGSM) (Tramèr et al. 2017), Diversity Itera-
tive FGSM (DI-FGSM) (Xie et al. 2019), and Momentum It-
erative FGSM (MI-FGSM) (Dong et al. 2018). Madry et al.
(2017) proposed the Projected Gradient Descent (PGD), a
variant of Iterative FGSM (I-FGSM) using projected gra-
dient descent, which makes it robust. Currently, MI-FGSM
and PGD attacks are considered the most efficient and robust
state-of-the-art adversarial examples in DNNs. In particular,
RFGSM, DI-FGSM, and MI-FGSM are only designed and
evaluated in the context of DNNs and have never been used
in DRL. In this work, we proposed MI-RFGSM by enhanc-
ing RFGSM, incorporating momentum, and applying it in
DRL. In addition, we refined DI-FGSM and MI-FGSM to
be applicable in DRL and evaluated against the MI-RFGSM
in their performance.

Adversarial Attacks in Deep Reinforcement Learning
(DRL). Huang et al. (2017) made the preliminary attempt to
attack the DRL agent by extending FGSM. Later, state-of-
the-art attacks of DRL, such as Lin et al. (2017); Sun et al.
(2020), mainly focused on finding an optimal time to attack

https://github.com/haider4445/FastUndetectableAttack
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Paper Algorithms Application Metrics Perturbations Setting Parameters

Sun et al. (2020)
A3C,
DDPG,
PPO

Atari (Pong, Breakout),
TORCS,
MuJoCo

Average Return C&W White Box
Number of Steps,
Damage
Awareness Delta

Lin et al. (2017) A3C,
DQN

Atari (Pong, MsPacman,
Seaquest, Qbert,
ChopperCommand)

Success rate,
Average Reward C&W White Box Number of Steps,

Epsilon

Behzadan and
Munir (2017)

DQN Atari (Pong) Success rate,
Average Reward

FGSM,
JSMA Black Box

Number of
Observations,
Epochs

Huang et al.
(2017)

A3C,
TRPO,
DQN

Atari (Pong, Seaquest,
SpaceInvaders,
ChopperCommand)

Average Return FGSM Both
Epsilon,
3 Norm
Constraints

Pattanaik et al.
(2017)

DDPG,
DDQN

MountainCar,
MuJoCo (Hopper,
HalfCheetah, CartPole)

Average Return GB White Box
MuJoCo
Physical
Parameters

Kos and Song
(2017)

A3C Atari (Pong) Average Reward FGSM,
Random Noise White Box

Epsilon,
Noise Amount,
Value Function

Our Attack
DQN,
PPO,
DDPG

Atari (Pong, BankHeist,
RoadRunner),
MuJoCo (Ant)

Success Rate,
Average Reward,
Attack Execution
Time,
Novel Continuous
Attack Success Rate

MI-RFGSM,
I-RFGSM,
FGSM, C&W,
Robust Sarsa,
MAD, PGD,
MI-FGSM,
DI-FGSM

White Box
Epsilon,
Alpha,
Number of Steps

Table 1: Environment Setup of papers

the DRL agent. However, Lin et al. (2017); Sun et al. (2020)
ignored the question of how-to-attack and blindly used the
state-of-the-art state perturbation technique, such as Carlini
& Wagner (CW) method. However, CW is very slow and
less robust under defense in DRL. Therefore, we compared
our perturbation method with the CW to prove the effective-
ness of MI-RFGSM.

Fast perturbation methods, such as naı̈ve FGSM (Good-
fellow, Shlens, and Szegedy 2014b), have been used in DRL
by (Huang et al. 2017); however, the naı̈ve FGSM is easily
detectable. Another variant of FGSM, called PGD, is one
of the state-of-the-art DRL attacks as it is fast and more ro-
bust than the CW. However, the state-of-the-art defenses in
DRL (Zhang et al. 2020; Oikarinen, Weng, and Daniel 2020;
Fischer et al. 2019) have recently challenged the robustness
of PGD-based attacks (Madry et al. 2017), which were orig-
inally considered in DNNs. The Robust Sarsa (RS) attack
which learns a a value function to create perturbations and
the Maximal Action Difference (MAD) attack which maxi-
mizes the difference from the desired action have also been
proposed (Zhang et al. 2020), but only consider the average
return metric. Therefore, there is a critical need to develop
scalable, effective, and robust state perturbation attacks in
DRL settings, which is the goal of our paper.

Preliminaries

This section provides an overview of the DRL and adversar-
ial states generation methods considered in this work.

Deep Reinforcement Learning (DRL)
Reinforcement learning (RL) algorithms optimize the ex-
pected cumulative reward by training a policy π. This policy
can be a deterministic or probabilistic function that maps a
state s to action a, π : S → A, where S and A are state
and action spaces, respectively. S and A can be constructed
of high or low dimensional discrete or continuous spaces. In
DRL, this policy function π is learned by a neural network.
Deep Q-Networks (DQN) (Mnih et al. 2013), Deep Deter-
ministic Policy Gradient (DDPG) (Lillicrap et al. 2015), and
Proximal Policy Optimization (PPO) (Schulman et al. 2017)
are three well known DRL algorithms.

Deep Q-Networks (DQN). In Q-learning, the Q-value is
the expected cumulative discounted reward when action a is
taken in state s. DQN is a kind of Q-learning where Q-values
are learned by a neural network (NN) while minimizing the
squared Bellman error. DQN has a feature, called Experi-
ence Replay, which helps decrease the high variance due to
Q-learning updates. In addition, DQN has Replay Buffer to
store all recent transitions. Random samples are taken from
this buffer to mitigate the correlation due to time. DQN takes
action based on the maximum Q-value. DQN has been uti-
lized best in discrete environments.

Deep Deterministic Policy Gradient (DDPG). DDPG uti-
lizes an Actor-Critic Network containing a Critic which
learns the Q-values and an Actor which learns the actions to
take. The Critic intakes action a and state s and outputs the
Q-value which is learned by minimizing the difference from
the next environmental reward output. The Actor intakes



state s and outputs action a which is learned from maximiz-
ing the Q-Values from the Critic Network. DDPG also uti-
lizes a Replay Buffer, but instead of using an Experience Re-
play it trains Off-Policy to reduce variance from Q-learning
updates. Off-Policy training utilizes a target network for ex-
ploration, with a second main network which learns the pol-
icy and will periodically partially update the target network.
DDPG was proposed for better control within continuous
environments.

Proximal Policy Optimization (PPO). PPO operates on
an Actor-Critic Network. Just like DDPG an Actor-Critic
network consists of an Actor, who observes action s and
outputs action a, and a Critic network that determines an
output network. PPO implements clipped surrogate objec-
tives and continuous operation. Clipped surrogate objectives
observe policy gradient objectives after every actor action
and truncates the objective observations within +-1 epsilon
(the hyperparameter). PPO performs policy updates between
every action utilizing clipped surrogate actions to prevent
small changes in an action from causing large changes in
the model. PPO was proposed to work in a continuous envi-
ronment requiring frequent policy updates.

Adversarial States Generation Methods
We will compare the performance of the following meth-
ods (or variants of them) against that of our MI-RFGSM:
FGSM (Goodfellow, Shlens, and Szegedy 2014a), Carlini &
Wagner (CW) (Carlini and Wagner 2017), Projected Gra-
dient Descent (PGD) (Madry et al. 2017), Diversity Itera-
tive FGSM (DI-FGSM) (Xie et al. 2019), Robust Sarsa and
MAD Attacks (Zhang et al. 2020). Due to the space con-
straint, interested readers can refer to the specified corre-
sponding references.

We leveraged the following three methods (i.e., I-FGSM,
MI-FGSM and RFGSM) to develop our MI-RFGSM.

Iterative Fast Gradient Sign Method (I-FGSM). Kurakin
et al. (2016) proposed I-FGSM, a variant of FGSM, taking
multiple small steps of size α in the direction of the gradient.
However, FGSM takes only one step of size ϵ to make per-
turbation small enough. This method also clips the result of
each step by ϵ. I-FGSM outperformed FGSM. Starting with
x′
0 = 0, on every iteration, it performs:

x′
i = x′

i−1 − clipϵ(α · sign(∇lossF,t(x
′
i−1))), (1)

where α is a step in the direction of the gradient.
Randomized FGSM (RFGSM). A single-step FGSM

method has a problem of converging to a degenerate global
minimum. I-FGSM obfuscates a linear approximation of the
loss due to small steps. Due to these problems, they gen-
erate weak perturbations, which can be easily defended. To
tackle this problem, Tramèr et al. (2017) presented RFGSM,
which adds a small random step to FGSM to escape the
non-smooth vicinity of the data point before linearizing the
model’s loss. Single-step RFGSM is computationally effi-
cient and has a high ASR than I-FGSM in DNNs. It per-
forms:

xadv
RFGSM = x′ + (ϵ− α) · sign(∇x′ loss(x′, ytrue)), (2)

where
x′ = x+ α · sign(N (0d, Id)). (3)

Momentum Iterative FGSM (MI-FGSM). Dong et al.
(2018) proposed MI-FGSM, which is a variant of FGSM
that integrates the momentum on each step of an iterative
FGSM to escape from poor local maxima and stabilize up-
date directions. Starting with x′

0 = 0, on every iteration, it
performs:

gi = µ · gi−1 +
∇lossF,t(x

′
i−1)

||∇lossF,t(x′
i−1)||1

, (4)

x′
i = x′

i−1 − clipϵ(α · sign(gi)), (5)

where µ is the decay factor and gi is the accumulated gradi-
ent at iteration i.

Problem Statement
A DRL agent interacts with an environment and learns pol-
icy π to choose an action a given a state s. This policy π
can be a probabilistic model π(s, a) ∼ [0, 1], which gives
the probability of taking an action a given a state s. The π
can also be a deterministic model where we can obtain an
action a directly from the policy function π given the state
s : a = π(s). The goal of the DRL agent is to maximize
the cumulative reward Ro by learning an optimal policy π∗.
The reward that the DRL agent aims to maximize is the ex-
pected discounted reward until the next T − 1 time steps,
represented by:

Ro =

T−1∑
t=0

Eat∼u(st)

[
γtr(st, at)

]
. (6)

Instead of maximizing this reward, an adversary aims to
minimize reward Ro by adding a perturbation δt into the
agent’s observation st to mislead the agent to take an ad-
verse action at. The adversary has to generate perturbation
δ as small as possible to be undetected. Out of all time steps,
the adversary may or may not choose to add perturbation δ
to the state st based on his strategy. In this way, the adver-
sary’s expected cumulative reward is given by:

Radv =

T−1∑
t=0

Eat∼u(st+xtδt)

[
γtr(st, at)

]
, (7)

where xt at given time t is 0 if the adversary does not inject
any perturbation; otherwise, it returns 1.

We need to find the perturbations δ0, δ1, . . . , δT−1 for
all time steps during an episode to compromise the
DRL agent to take the corresponding adversarial actions
aadv0 , aadv2 , . . . , aadvT−1. These adversarial actions should then
minimize the reward of the DRL agent, Ro, and the reward
of the DRL agent under defense, Rdefense. We also want to
find each perturbation δt in the minimum time possible.

Proposed Approach: MI-RFGSM
We propose the Momentum Iterative Randomized Fast Gra-
dient Sign Method (MI-RFGSM) to find the robust and ef-
fective perturbations in the minimum time possible. MI-
RFGSM is designed by combining RFGSM, MI-FGSM, and



Figure 1: The overview of Non-Targeted MI-RFGSM: MI-RFGSM attacks a single frame during an episode to compromise a
DRL agent following: (a) DRL agent takes an true non-adversarial state strue to give non-adversarial, true action, atrue; (b) Start
by adding the random step of size α to strue; (c) Until the number of steps, m, compute the MI-RFGSM state sMI−RFGSM

t by
calibrating the momentum-based accumulated gradient, g, using strue and atrue, and then clipping it with α; and (d) Compute
adversarial action, aadv, by giving a final MI-RFGSM adversarial state sMI−RFGSM

m−1 to the DRL agent.

I-FGSM and extending their applications from DNNs to
DRL. This novel combination of FGSM variants has never
been used in DRL setting as well as DNN setting before.

For the extension to the DRL setting, we consider true
label ytrue as a the action produced by the policy of DRL
agent, represented by:

atrue = DRLAgent(strue), (8)

where strue is the original non-adversarial state and atrue is
the original non-adversarial action given by the DRL agent.

In MI-RFGSM, we start with taking a step of size α in
the random direction as in Eq. (9). Then, at each step t, we
calculate the adversarial state sMI−RFGSM

t by taking the step
of size α in the direction of gradient g. Starting with:

sMI−RFGSM
0 = strue + α · sign(N (0d, Id)). (9)

On every iteration i, it performs:

gt = µ · gt−1 +
∇s′ loss(s

′, atrue)

||∇s′ loss(s′, atrue)||1
, (10)

sMI−RFGSM
t = sMI−RFGSM

t−1 + α · sign(gt), (11)

where µ is the decay factor and gt is the accumulated gradi-
ent at iteration t.

aadv = DRLAgent(sMI−RFGSM). (12)

Eq. (11) means that we move policy π away from an opti-
mal action by using the direction of the gradient. We make
it iterative to take multiple gradient direction steps. Multi-
ple gradient steps move the policy away from the optimal
action, contributing to generating high ASR and low AR.
Adding a random step in the start contributes to enhancing
this method robust as it allows to escape the non-smooth
vicinity of the data point before linearizing the model’s loss.
Eq. (10) shows the addition of a momentum term in gra-
dient on each step. This solves the attack becoming stuck

at a poor local maxima and gives the gradient a necessary
boost, called a momentum, to try to reach the global or op-
timal maxima. The momentum also stabilizes the gradient
updates. Hence, MI-RFGSM is effective in terms of ASR
and AR because it tries to reach the global maxima, which
helps minimize AR and maximize ASR as much as possible.
In summary, MI-RFGSM uses the novel combination of ran-
dom start of fixed size alpha α, iterative steps of size alpha α
and momentum in DRL setting. To apply in DRL setting, it
uses true state strue and true action atrue at a given time step
t to compute the gradients. We summarize the procedures of
MI-RFGSM in Figure 1.

Differences between FGSM variants and MI-RFGSM are
highlighted in Figure 2. Differences between PGD (i.e., the
most similar baseline to ours) and MI-RFGSM is that MI-
RFGSM takes a fixed size step α in the random direction
instead of uniformly choosing the random point. This is the
same α which MI-RFGSM takes in iterative steps after the
random start. We think MI-RFGSM is relatively faster than
PGD because we already have the step size, α that is some-
times smaller than the step size of PGD as PGD can choose
a distant random step. In addition, incorporating momentum
will add extra time cost in MI-RFGSM. Hence, we tested
MI-RFGSM with and and without the momentum to inves-
tigate its impact. In maximizing ASR and minimizing AR
under defense, MI-RFGSM performs better than the PGD
because in selecting the size of a random step, PGD may
choose a distant step, making it noticeable by the defender
algorithms. However, our proposed MI-RFGSM is more ef-
fective against defenses as it uses fixed step α in a random
direction, making it less noticeable. Other baselines includ-
ing CW are not robust due to lack of random initialization.

Our proposed MI-RFGSM attacks all steps during an
episode to evaluate the effectiveness, efficiency, and robust-
ness of MI-RFGSM in all situations during the episode. In
addition, this allows a fair comparison of our MI-RFGSM
with the other state-of-the-art attacks. We always consider



xt = 1 in Eq. (7) as we attacked all number of steps during
the episode by

∑T−1
t=0 xt = T where T is the same as an

episode length.

Figure 2: Difference between FGSM variants and our pro-
posed MI-RFGSM and I-RFGSM.

Experimental Setup
Metrics. We use the following traditional metrics for our
analyses:

• Average Attack Execution Time Per Perturbation
(AET) captures the average time required to generate a
perturbed state. For the respective attacks, targeted or non-
targeted, we measure AET by AETT = T (NNTS)

NS
and

AETT = T (NTS)
NS

, where NS is the total number of ad-
versarial states computed, T (NNTS) is the total times
elapsed to generate all non-targeted adversarial states, and
T (NTS) is the total times elpased to generate all targeted
adversarial states.

• Average Reward (AR) measures the average reward of
the rewards of all episodes. Given Ne be the number of
episodes and ri be the total rewards accumulated during
an episode i, AR is measured by AR =

∑N
i=0 ri
Ne

.
• Attack Success Rate (ASR) measures the total number of

attack successes over the total number of attack attempts.
Considering either targeted or non-targeted attacks, ASR
is measured by ASRNT =

NAS
NT

NNT
and ASRT =

NAS
T

NT
,

where NAS
NT refers to the total number of successes by

non-targeted attacks and NNT is the total number of at-
tempts by non-targeted attacks. Similarly, NAS

T refers to
the total number of successes by targeted attacks and NT

is the total number of attempts by targeted attacks. Under
non-targeted attacks, a failure indicates the case where the
attack is entirely unable to succeed or the DRL agent takes
an action maximizing the reward. An attack attempt is de-
fined by one-time attack per time step. On the other hand,
targeted attacks mean generating a perturbation targeting
to lead the DRL agent to take a targeted action. For ex-
ample, in Atari Pong, a targeted attack can aim to make

the DRL agent take a targeted action ‘up’ at a given point.
Thus, reward reduction by other causes, rather than the
perturbation targeted attack, is not simply considered as
attack success in ASRT .

Traditional metrics are important to understand and utilize
within experiments, however as with any pure numeric met-
rics there are a number of weaknesses and lack of compre-
hensions which are apparent within them. Average Reward
is important to utilize as minimizing rewards will be a pri-
mary attack vector and should be considered, however, not
every attack will be solely focused on reducing overall re-
ward. Attacks which seek to cause an action at a single point
of time need to be considered, and average reward fails to
encompass that. In addition, the usage of the Average Re-
ward metric as a common baseline can lead to a comparison
of finding the worst action for every timestep, which may
or may not be a part of an attack and can lead newly de-
veloped attacks to only focus on this which could lead to
a failure of development in other areas. Attack Success is
one metric which does look at causing an action at a single
point of time. However, with attack success rate defined as
it is by the literature, it can only be utilized within discrete
action environments. Within continuous environments, ex-
tremely subtle changes within the environment, can lead to
extremely minuscule changes within the continuous actions.
These resulting actions however, are not the same as the
original and as such different success rate metrics for con-
tinuous environments need to be defined. Each metric below
is constructed in a novel way or is being used in a novel
way within continuous action success rates. The following
novel continuous action success rate metrics have been uti-
lized within our experiment.

• Action Mean Average Error (MAE) measures the aver-
age difference between each continuous action. Smaller
MAE values are better. Given N as the number of ac-
tions, ai as the ith action, pi as the ith peturbed action,
and ti as the ith target action at each time step, Ac-
tion MAE is measured by MAET =

∑N
i=0 |ti−pi|

N and

MAENT =
∑N

i=0 |ai−pi|
N for targeted and nontargeted at-

tacks respectively.
• Action Attack Sensitivity (AS) inverses the MAE value

to create a scalable metric for increasingly small values of
MAE. A value of 1 AS would indicate a MAE of 0.1 and
a value of 3 AS would indicate a MAE of 0.001. AS is
measured by AS = − logMAE.

• Binned Success Rate (BSR) discretized success rate for
continuous control environments. The BSR takes in a ac-
curacy bin size, and determines if the perturbed action is
within the bin size for a targeted attack or outside the bin
size for an untargeted attack. For a targeted attack, a dif-
ference of 0.02 would pass a bin size of 0.1 but fail a bin
size of 0.01, and vice versa for a untargeted attack. Given
a accuracy bin size of B, ai as the ith action, pi as the
ith peturbed action, ti as the ith target action at each time
step, the non-targeted attack success for any given bin,
SB
NT , and the targeted attack success for any given bin,

SB
T , can be measured by SBNT = (|ai − pi| > B) and



SBT = (|ti − pi| < B). The binned success rate for N

samples can then be measured by BSRB
NT =

∑N
i=0 SB

NT

N

and BSRB
T =

∑N
i=0 SB

T

N . Since targeted attacks will look to
minimize the difference from the target action, and non-
targeted attacks will look to maximize the difference from
the original action, binned success rate has inverse mean-
ing between the two. Success in a small bin would indicate
a small difference, which is shows a good targeted attack
and a poor non-targeted attack. Bin sizes are important to
choose correctly, because success in a single bin doesn’t
indicate that for targeted attacks a smaller bin wouldn’t be
possible and for non-targeted attacks a larger bin wouldn’t
be possible. As such, at least two bin sizes are required at a
bare minimum to demonstrate the accuracy of any attack,
targeted or non-targeted.

Comparing Schemes. We use the following perturbation
attacks to be compared against our MI-RFGSM. As dis-
cussed earlier, we did not consider Lin et al. (2017); Sun
et al. (2020) as comparing schemes because they focus on
answering the second question, when-to-attack, rather than
how-to-attack. The comparing schemes include:

• Fast Gradient Sign Method (FGSM) (Goodfellow,
Shlens, and Szegedy 2014b): We chose this as our base-
line because it has been not only extensively used in DNN
settings but also has been numerous times used in DRL
settings, such as uniform attack (Huang et al. 2017).

• Carlini & Wagner Method (CW) (Carlini and Wag-
ner 2017): This method is considered one of the well-
known state-of-the-art methods in DRL settings guaran-
teeing 100% ASR. The state-of-the-art end goal-based
DRL attacks (Lin et al. 2017; Sun et al. 2020) use the
CW method to generate targeted perturbations. We adapt
CW for usage within continuous action and observation
environments by utilizing a more general f function and
update to best attack.

• Projected Gradient Method (PGD) (Madry et al. 2017):
PGD is not much popular in end goal-based DRL attacks,
but it is considered to be the robust, fast, and successful
state-of-the-art attack in DRL settings. Due to its robust-
ness, PGD is usually employed by defenders to test their
defenses as in (Zhang et al. 2020; Oikarinen, Weng, and
Daniel 2020; Fischer et al. 2019).

• Momentum Iterative Fast Gradient Sign Method (MI-
FGSM) (Dong et al. 2018): We extended MI-FGSM from
DNN settings to DRL settings and compared it with our
method. MI-FGSM is the state-of-the-art adversarial ex-
ample in DNN settings. This effective method has not
been enhanced to be applied in DRL before.

• Diversity Iterative Fast Gradient Sign Method (DI-
FGSM) (Xie et al. 2019): We also extended DI-FGSM
from DNNs to DRL and compared it with our method.
We included it as our baseline due to its similarity with
MI-RFGSM in considering generalizability. DI-FGSM is
not utilized in continuous control environments due to its
focus on adjusting images.

• Maximal Action Difference (MAD) (Zhang et al. 2020):
MAD attack is included for its usage within the SA de-

Perturbation
Method Steps (m) DQN and PPO DDPG

Epsilon Alpha Epsilon Alpha
CW 1000 NA NA NA NA
PGD 20 8/255 2/255 0.2 0.03

DI-FGSM 20 8/255 2/255 NA NA
MI-FGSM 20 8/255 2/255 0.2 0.03

FGSM 1 8/255 NA 0.2 NA
I-RFGSM 20 8/255 2/255 0.2 0.03

MI-RFGSM 20 8/255 2/255 0.2 0.03

Table 2: Optimal Values of the Parameters identified Under
Each Perturbation Method

fense literature and its unique perspective as a maximized
untargeted attack. MAD attack has only been evaluated on
the AR metric before, which we run under other metrics.

• Robust Sarsa (RS) (Zhang et al. 2020): Robust Sarsa is
included within our comparisons as the only trained at-
tack for targeting a specific model. It has also only been
evaluated on the AR metric before, and more metrics are
utilized for our usage here.
Tuned Parameters. We tuned the following parameters

for optimizing the performance of the MI-RFGSM: The size
of a perturbation (ϵ), the number of steps of perturbation
(m), and the size of the step (α).

Defense Setting in DRL. There are very few defenses
proposed for adversarial attacks in the DRL. The conven-
tional adversarial training defense has been widely used in
DNNs (Kurakin, Goodfellow, and Bengio 2016; Madry et al.
2017) and DRL (Kos and Song 2017; Pattanaik et al. 2017;
Behzadan and Munir 2017). However, recently more ro-
bust and efficient defense methods were proposed specif-
ically for DRL, such as Robust ADversarIAl Loss (RA-
DIAL) (Oikarinen, Weng, and Daniel 2020), State Adver-
sarial (SA) (Zhang et al. 2020), and Alternating Training of
Learned Adversaries (ATLA) (Zhang et al. 2021).

We compare robustness of our attack under RADIAL,
SA and ATLA within the different DRL agents. RA-
DIAL (Oikarinen, Weng, and Daniel 2020) improved the ro-
bustness of DRL agents by designing the adversarial loss
functions with robustness verification bounds during train-
ing. It leverages robustness verification bounds to keep the
loss as low as possible because low loss leads to better per-
formance of the DRL agent. It primarily parametrizes k to
minimize the loss where Ladv = kLS + (1 − k)LW . RA-
DIAL applies robustness verification algorithms on the DRL
to obtain the layer-wise output bounds of Q-Networks and
uses these output bounds to calculate an upper bound of the
original loss function under worst-case adversarial perturba-
tion LW , given LS is the standard loss function.

SA (Zhang et al. 2020) utilizes a State Adversarial Marko-
vian Decision Process (SA-MDP) which introduces v(s) ad-
versary which perturbs the observed input state while not
changing the underlying state. The agents action π(a|v(s))
is then potentially sub-optimal. The agent is then able
to be trained under the range of action of the adversary.
ATLA (Zhang et al. 2021) furthers the SA-MDP by train-
ing a optimal v(s) policy and training a DRL model under
the optimal adversary.

Environmental Setup. We consider a white-box attack
where an adversary does not have access to the training time.
However, the adversary has the test time access of the DRL



DRL Environment Defenses Attacks Targeted/
Non-Targeted

DQN Atari (Pong,
RoadRunner,
BankHeist)

No Defense,
RADIAL-

DQN

C&W, PGD, DIFGSM,
MIFGSM, FGSM,

MI-RFGSM, I-RFGSM

Both

DDPG MuJoCo(Ant) No Defense,
SA

C&W, PGD, DIFGSM,
MIFGSM, FGSM,

MI-RFGSM, I-RFGSM

Both

PPO MuJoCo(Ant) No Defense,
SA, ATLA

C&W, PGD, DIFGSM,
MIFGSM, FGSM,

MI-RFGSM, I-RFGSM

Non-Targeted

Table 3: Comparison Of Experiments on Different DRL Al-
gorithms.

agent where it knows the neural network architecture and
has access to craft its adversarial state. For our experiments,
we utilize trained DQN, DDPG and PPO models using the
implementation of (Mnih et al. 2015), (Zhang et al. 2020),
and (Zhang et al. 2021) to play within several environments.
All of the DRL algorithms were run using Pytorch and Open
AI Gym. The discrete DQN was used within Atari games,
specifically Pong, Road Runner and Bank Heist because of
their prevalence in the literature. When we observed that
state-of-the-art CW method is not robust when RADIAL-
DQN is playing Pong, we extended our experiments to Road
Runner an BankHeist to see similar results. For Bank Heist
and Road Runner, we did not test on Vanilla DQN as our
main goal was to strengthen our conclusion about state-of-
the-art CW method under RADIAL-DQN. The continuous
focused DDPG and PPO were run under the continuous Mu-
JoCo simulation environment, specifically Ant and Hopper.
Both were chosen due to their prevalence in the literature,
with Ant specifically being chosen due to its longer episode
length. We chose Ant for both PPO and DDPG since its
a common practice in literature to test a same application
on multiple algorithms. We did not choose Atari Games for
PPO and DDPG since discrete environments are not fit for
continuous algorithms like DDPG and PPO. For PPO, we
included non-targeted variants only. For DQN, we could not
use SA and ATLA because we could not train models due to
lack of time and infrastructure. Rather, we focused on pre-
trained models made available by RADIAL, ATLA and SA
authors. Similarly, for PPO, we could not use RADIAL as
pre-trained models were not available. For DDPG, we could
not use ATLA and RADIAL for the similar reasons. How-
ever, in total, we have been able to conduct 15 comprehen-
sive experiments in total against 4 environments, 3 DRL al-
gorithms, 7 state-of-the-art baseline attacks and 3 defenses
as shown in Table 4.

The loss function is the cross-entropy loss for gradient-
based attacks. We have used L∞ norm in all FGSM-based
baselines, including MI-RFGSM. For the CW, we have used
L2 norm. Assuming that the attacker will have the compu-
tational power equivalent to the commodity CPUs, we used
the Google Colaboratory CPU (AMD EPYC 7B12, 2 CPUs
@ 2.3 GHz, 13 GB RAM) for DQN experiments and per-
sonal computers for DDPG and PPO due to the inability of
MuJoCo to be run within Google Colab. DDPG was run on
a a 3070ti, 32 GB of RAM and a 5950x. PPO experiments
were run on Intel(R) Core(TM) i7-9750H CPU @ 2.60 GHz
32 GB RAM. We run every experiment 100 times to min-
imize the changes in metrics due to random seeds and en-
vironmental factors. We reported the average and standard

Algorithm 1: Evaluation Experiment
1: Inputs:
2: A← an actions set
3: s0 ← an initial non-adversarial state
4: Parameters:
5: targeted← return 1 if attack is targeted; 0 otherwise
6: defense← return 1 if defense is applied; 0 otherwise
7: PerturbationMethod()← a perturbation method used
8: for each episode do
9: for each step t during an episode do

10: if targeted is true then
11: aadv∗

t = RandomStrategy(A)
12: sadvt = PerturbationMethod(st, a

adv∗
t )

13: else
14: sadvt = PerturbationMethod(st)
15: end if
16: if defense is true then
17: aadv

t = DRLdefense(s
adv
t )

18: else
19: aadv

t = DRL(sadvt )
20: end if
21: radvt , st+1,done = Perform(aadv

t )
22: if done is true then
23: break
24: end if
25: end for
26: end for

deviation of AR and AETs for each experiment, as well as
success rate metrics appropriate for the environment. Table 4
gives a full comparison of environments, attacks, defenses,
target and DRL algorithms in terms of specifically AR.

We conducted extensive experiments to evaluate the effi-
ciency, effectiveness, and robustness of the two variants of
the MI-RFGSM compared against the other attacks are tar-
geted or non-targeted under no defense or defenses.

For non-targeted attacks, we avoid the desired action
found by the DRL model. For targeted attacks, we take a
particular perturbation to mislead a DRL agent to the de-
sired action. To evaluate the proposed two variants of the
MI-RFGSM in DRL, we considered random actions in per-
turbation methods to evaluate their abilities to generate a
targeted action. We detailed the designed algorithm in Al-
gorithm 1.

We compared the baseline attacks (i.e., CW, PGD, DI-
FGSM, MI-FGSM, FGSM, Robust Sarsa, MAD) with the
two variants of MI-RFGSM. We incorporated momentum in
first variant of MI-RFGSM while second variant is only a
randomized iterative version without the momentum, which
we call I-RFGSM. The number of steps (m) is fixed to 20,
optimal for FGSM-based perturbation attacks. However, the
CW method performed best at m = 1000, which was used
in our experiment. For a fair comparison, we also added
CW results at m = 20. We considered naı̈ve FGSM, using
m = 1 by definition, as a baseline. We fixed ϵ = 8/255 and
α = 2/255 for our experiments of DQN and PPO, which
are identified as optimal after rigorous sensitivity analysis
on all considered perturbation methods. We fixed ϵ = 0.2
and α = 0.03 for DDPG based upon other research re-



Sr.
No

DRL
Algo-
rithm

Environment Defenses Targeted/
Non-Targeted

Best AR Comparable
AR to best

Worst AR Best ASR Comparable
ASR to

best

Worst ASR

1- DQN Atari Pong No Defense Non-Targeted MI-RFGSM All NA MI-RFGSM All FGSM
2- DQN Atari Pong No Defense Targeted CW MI-

RFGSM
DI-FGSM CW MI-

RFGSM
DI-FGSM

3- DQN Atari Pong RADIAL-DQN Non-Targeted MI-RFGSM,
PGD

I-RFGSM,
MI-FGSM

CW, FGSM MI-RFGSM,
PGD, I-RFGSM

NA CW, FGSM

4- DQN Atari Pong RADIAL-DQN Targeted MI-RFGSM,
PGD,

MI-FGSM

NA CW, FGSM I-RFGSM MI-
RFGSM,

PGD,
MI-FGSM

CW, FGSM

5- DQN Atari
RoadRunner

RADIAL-DQN Non-Targeted MI-RFGSM NA CW MI-RFGSM,
I-RFGSM

MI-FGSM CW

6- DQN Atari
RoadRunner

RADIAL-DQN Targeted MI-FGSM MI-
RFGSM,

I-RFGSM,
PGD

CW MI-RFGSM NA CW

7- DQN Atari BankHeist RADIAL-DQN Non-Targeted CW,
MI-RFGSM

All NA MI-RFGSM MI-FGSM CW

8- DQN Atari BankHeist RADIAL-DQN Targeted CW,
MI-RFGSM

All NA MI-RFGSM NA CW

9- DDPG MuJoCo (Ant) No Defense Non-Targeted CW MI-
RFGSM,

PGD

MI-FGSM,
FGSM

CW NA FGSM,
MIFGSM

10- DDPG MuJoCo (Ant) No Defense Targeted CW NA NA MI-RFGSM CW,
MIFGSM

FGSM

11- DDPG MuJoCo (Ant) SA Non-Targeted CW NA FGSM,
MI-FGSM

CW NA FGSM,
MIFGSM

12- DDPG MuJoCo (Ant) SA Targeted CW NA NA CW NA FGSM
13- PPO MuJoCo (Ant) No Defense Non-Targeted CW NA MAD CW, MI-FGSM FGSM

Variants
NA

14- PPO MuJoCo (Ant) SA Non-Targeted CW MI-
RFGSM,

FGSM
Variants

Robust Sarsa,
MAD

MI-RFGSM,
FGSM Variants

NA CW

15- PPO MuJoCo (Ant) ATLA Non-Targeted CW NA MAD, Robust
Sarsa

MI-RFGSM FGSM
Variants

CW

Table 4: Comparison Of 15 Experiments against different DRL algorithms, defenses, and environments.

Perturbation
Method (steps)

No Defense Defense with RADIAL-DQN
Non-targeted Targeted Non-targeted Targeted

CW (1000) 100% 97% 3% 0%
CW (20) 100% 0% 3% 0%
PGD (20) 100% 82% 99% 77%

DIFGSM (20) 100% 73% 73% 54%
MIFGSM (20) 100% 83% 75% 76%

FGSM (1) 85% 76% 28 % 19%
MI-RFGSM (20) 100% 83% 98% 77%
I-RFGSM (20) 100% 84% 99% 83%

Table 5: Comparison of Attack Success Rate for Pong using
DQN

sults (Zhang et al. 2020). All the optimal values of the pa-
rameters under each method are summarized in Table 2.

Results & Analyses
Performance Analysis in Attack Execution Time (AET).
Table 7 shows the comprehensive comparison between MI-
RFGSM variants and the baselines in AET when tested on
DQN playing Pong. MI-RFGSM variants outperformed all
baselines and showed comparable or better AET than PGD,
which performed best among the baselines. Non-targeted I-
RFGSM, the best performing MI-RFGSM, is 12 ms faster
than the non-targeted PGD attack. For targeted attacks,
PGD shows comparable performance with MI-RFGSM. I-
RFGSM outperformed again in AET for targeted attacks.
Interestingly, CW with 20 steps is faster than most FGSM
variants with 20 steps, while CW performs poorly with 20
steps. This speed is due to CW not needing to complete gra-
dient calculations at every time step. MI-RFGSM (20 steps)
is six to nine times faster than the state-of-the-art CW (1000
steps) with better robustness. Similarly, Table 17 is the AET
comparison when DDPG and SA DDPG is playing Ant un-

Perturbation
Method (steps)

No Defense Defense with RADIAL-DQN
Non-targeted Targeted Non-targeted Targeted

CW (1000) −21.00 ±
0.00

−21.00 ±
0.00

+20.85 ±
0.36

+20.50 ±
0.50

CW (20) −21.00 ±
0.00

+20.75 ±
0.43

+20.70 ±
0.46

+20.80 ±
0.40

PGD (20) −21.00 ±
0.00

−20.39 ±
0.8

−20.96 ±
0.20

−20.44 ±
0.80

DI-FGSM (20) −21.00 ±
0.00

−19.97 ±
1.27

−19.87 ±
1.32

−16.78 ±
2.67

MI-FGSM (20) −21.00 ±
0.00

−20.30 ±
1.06

−20.56 ±
0.75

−20.47 ±
0.73

FGSM (1) −21.00 ±
0.00

−20.62 ±
0.75

+20.75 ±
0.43

+16.80 ±
7.88

MI-RFGSM (20) −21.00±
0.00

−20.35±
0.8

−20.91±
0.29

−20.32±
0.95

I-RFGSM (20) −21.00±
0.00

−20.28±
0.9

−20.90±
0.36

−20.24±
0.91

Table 6: Comparison of Average Reward for Pong using
DQN.

der non-targeted and targeted variants. Similar trends can be
seen in DDPG. Overall, FGSM variants are taking similar
time and MI-RFGSM is particularly 18-20 times faster than
CW. Table 8 and Table 9 are the AET comparisons when
DQN is playing BankHeist and RoadRunner respectively.
We did not do performance analysis for PPO since, we are
gaining same results over DDPG and DQN.

Performance Analysis in Average Reward (AR). Table 6
shows the comprehensive comparison between MI-RFGSM
variants and the baselines in terms of AR when DQN is play-
ing Pong. For Atari Pong, −21 is the least possible reward,
which is desired by the attacker, while +21 is the maximum
possible reward desired by the defender. For non-targeted at-
tacks under no defense, all methods achieved the minimum
possible AR of −21. However, under defense, MI-RFGSM
variants outperformed all baselines except PGD and showed



Perturbation
Method (steps)

Attack Execution Time (ms)
Non-Targeted Targeted

CW (1000) 716 ± 32 963 ± 20
MIFGSM (20) 128 ± 8 138 ± 8
DIFGSM (20) 103 ± 6 135 ± 14

PGD (20) 94 ± 6 117 ± 13
CW (20) 21 ± 2 26 ± 2

FGSM (1) 6 ± 2 6.3 ± 0.7
MI-RFGSM (20) 126 ± 7 125 ± 7
I-RFGSM (20) 82 ± 6 98 ± 6

Table 7: Comparison of Attack Execution Time for Pong us-
ing DQN.

Perturbation
Method (steps)

Attack Execution Time (ms)
Non-Targeted Targeted

CW (1000) 693 ± 55 715 ± 134
MIFGSM (20) 92 ± 6 91 ± 6
DIFGSM (20) 101 ± 5 100 ± 6

PGD (20) 87 ± 5 94 ± 7
CW (20) 21 ± 2 21 ± 2

FGSM (1) 5 ± 0.5 5 ± 0.6
MI-RFGSM (20) 122 ± 5 122 ± 5
I-RFGSM (20) 87 ± 7 92 ± 11

Table 8: Comparison of Attack Execution Time for
BankHeist using DQN.

comparable results with PGD. While MI-RFGSM performs
comparably to PGD in AR, it still outperforms all baselines
in ASR and ASR under defense. MI-FGSM is better than
DI-FGSM in ASR and AR. When no defense is used, the
performance of CW in ASR and AR with m = 1000 has no
match; however, it showed poor robustness and inefficiency
in AET. Naı̈ve FGSM also works only under no defense.

Table 10 also shows the comprehensive comparison when
RADIAL-DQN is playing RoadRunner and BankHeist.
Lower reward means better attack here too. For RoadRun-
ner, MI-RFGSM performs best and CW performs poor,
showing CW’s poor robustness against RADIAL-DQN,
strengthening our results. For BankHeist, however, CW is
quite comparable to MI-RFGSM.

Table 12 shows the comprehensive results for MuJoCo
Ant environment played by Vanilla DDPG and SA DDPG
(defense) under non-targeted and targeted variants. The in-
sights can also be seen in Table 4 where CW is outperform-
ing in terms of AR. MI-RFGSM was comparable in one ex-
periment of no defense non-targeted.

Table 13 shows the comprehensive results for MuJoCo
Ant environment played by Vanilla PPO, SA PPO (defense)
and ATLA PPO (defense) under non-targeted variant. CW
again outperformed here and MI-RFGSM was comparable
in one experiment.

Overall, MI-RFGSM outperformed in discrete environ-
ments of Atari and under defense of RADIAL. However,
under continuous environments of MuJoCo, CW did con-
siderably well in terms of AR under defenses of SA and
ATLA. MI-RFGSM did not perform worse under any condi-
tion however, CW performed worst or did not perform under
RADIAL defense. MI-RFGSM outperformed or was com-
parable in most cases and was above average in other cases.
It would be an interesting result to see how CW performs un-
der RADIAL-PPO and RADIAL-DDPG because CW does
not perform under RADIAL-DQN. We are comparing our
results mostly with CW in continuous environments because
CW was best performing in continuous environments.

Perturbation
Method (steps)

Attack Execution Time (ms)
Non-Targeted Targeted

CW (1000) 777 ± 90 790 ± 94
MIFGSM (20) 77 ± 5 81 ± 5
DIFGSM (20) 91 ± 8 93 ± 5

PGD (20) 79 ± 5 82 ± 5
CW (20) 22 ± 17 21 ± 9

FGSM (1) 5 ± 0.4 5 ± 0.5
MI-RFGSM (20) 78 ± 5 82 ± 5
I-RFGSM (20) 81 ± 5 82 ± 7

Table 9: Comparison of Attack Execution Time for Road-
Runner using DQN.

Perturbation
Method (steps)

BankHeist RoadRunner
Non-Targeted Targeted Non-Targeted Targeted

CW (1000) 0 ± 0 0 ± 0 14000 ±
1000

18400 ±
15400

CW (20) 0.33 ± 1.8 1 ± 3 13683 ±
18511

13787 ±
18508

PGD (20) 2.33±5.59 4 ± 6.11 17 ± 45 23 ± 76
DI-FGSM (20) 1 ± 3.96 4 ± 6.63 87 ± 106 280 ± 399
MI-FGSM (20) 0.67±2.49 3.67 ±

5.47
3 ± 18 3 ± 18

FGSM (1) 0 ± 0 2.33 ±
4.23

247 ± 394 220 ± 338

MI-RFGSM (20) 1.67±
4.53

3± 5.26 0.00±
0.00

73± 254

I-RFGSM (20) 1± 3 3± 4.58 13± 34 33± 79

Table 10: Comparison of Average Reward for RoadRunner
and BankHeist using Radial-DQN

Performance Analysis in Discrete Attack Success
Rate(ASR). Within discrete action environments, only the
traditional usage of ASR is needed. Table 5 shows the com-
prehensive comparison between MI-RFGSM variants and
the baselines in ASR when tested on DQN playing Pong.
MI-RFGSM variants outperformed all baselines except for
CW (1000) for targeted attacks on no defense. Within the
RADIAL defense, all alternatives are impacted, however the
MI-RFGSM variants are impacted the least. CW, however,
completely fails in both non-targeted and targeted attacks,
performing worse that even naı̈ve FGSM. PGD performs
comparable to the worst MI-RFGSM variant, but doesn’t
match the same results that the best variant shows.

Performance Analysis of Continuous Success Metrics.
Table 15 and Table 14 show full evaluations of the differ-
ent metrics we have proposed for the Ant environment run-
ning under DDPG. As Attack sensitivity is the same value
as MAE, the analysis section will focus on MAE for con-
sistency. For targeted attacks under no defense, MI-RFGSM
and CW outperform all other perturbation methods, being
only 0.0044 MAE and 0.2% binned success rate of a bin
size of 0.1 apart from one another. For targeted attacks under
the SA defense, CW performs better than all other options,
however, MI-RFGSM variants remain consistent or better
than the rest of the perturbation options for both MAE and
binned success rates. For untargeted attacks CW performed
best both without and with the SA defense enabled in both
MAE and binned success rates. However, MI-RFGSM vari-
ants again performed equal to or better than the rest of the
alternatives within untargeted attacks.

The Table 16 shows the binned attack success rates for un-
targeted attacks in the Ant environment run using PPO, un-
der no defense, and SA and ATLA defenses. CW performs
the best under no defense, but not substantially so compared
to the MI-RFGSM variants. Under defenses, there was an
interesting result between different bin sizes. While CW sig-



Perturbation
Method (steps)

BankHeist RoadRunner
Non-Targeted Targeted Non-Targeted Targeted

CW (1000) 0% 0% 1% 0%
CW (20) 18% 0% 2% 0%
PGD (20) 99% 78% 99% 89%

DIFGSM (20) 88% 68% 89% 79%
MIFGSM (20) 100% 88% 100% 91%

FGSM (1) 47% 47% 91% 85%
MI-RFGSM (20) 100% 90% 100% 95%
I-RFGSM (20) 99% 79% 100% 91%

Table 11: Comparison of Attack Success Rate for RoadRun-
ner and BankHeist using Radial-DQN

nificantly outperformed in the larger (harder) bin size, it un-
derperformed for the smaller (easier) bin sizes. This would
indicate that CW is more accurate and precise within its at-
tacks under defense, but also has the greatest chance for any
perturbation to completely fail to produce any results, re-
gardless of the accuracy needed.

Performance Analysis across different algorithms and
environments

Table 4 shows the comparison in terms of AR and ASR
of 15 different experiments run on 3 different DRL algo-
rithms, 3 defenses, 7 baseline attacks and 4 environments
under targeted and non-targeted variants. For discrete envi-
ronments such as Atari Pong, RoadRunner, BankHeist, MI-
RFGSM was best in terms of AR and ASR under defenses
and no defenses as compared to CW and PGD. PGD was
comparable in some cases. We can conclude that for DQN,
MI-RFGSM outperformed and CW was either comparable
or worst. However, for DDPG and PPO or continuous en-
vironments, CW outperformed and MI-RFGSM was above
average. Having taken approximately 10 times less time than
CW, MI-RFGSM is performing above average in continu-
ous environments, which is quite an achievement. In terms
of ASR and AR, CW has performed worst for many number
of experiments, which shows its unreliability.

Sensitivity Analyses We extensively parameterized each
perturbation method to identify the optimal parameter values
for comparison, as summarized in Table 2. Here we com-
pared the most promising four perturbation methods (i.e.,
FGSM-based attacks) we observed in our experiment, which
are MI-RFGSM, I-RFGSM, MI-FGSM, and PGD, denoted
by MI-RFGSM-T, I-RFGSM-T, MI-FGSM-T, and PGD-T
in Figure 3(a), respectively. This figure is for DQN playing
Pong game. We varied m = 5, 10, 15, 20, 25, and 30 and an-
alyzed their impact on ASR and AET. For non-targeted at-
tacks under no defense, we found no change in ASR and AR.
For targeted attacks under no defense, we found m = 20 to
be optimal for all perturbation methods. Figure 3(a) clearly
shows the outperformance of MI-RFGSM in ASR for the
targeted attacks. Figure 3(b) and Figure 3(c) shows simi-
lar trends for BankHeist and RoadRunner respectively when
RADIAL-DQN is playing under targeted attacks. We also
see that at m = 20, there is optimal performance for all
methods. I-RFGSM-T performs the best at m = 20. MI-
RFGSM-T performs the best at m = 15, with an AET of
104 ms, faster than 20 steps baselines, including PGD. We
can also observe the change in AET when varying m under
the targeted perturbation attacks, as shown in Figure 3(d). I-
RFGSM is the fastest for targeted attacks. In Figure 3(d),

(a) Pong (b) BankHeist

(c) RoadRunner (d) Pong
Figure 3: Sensitivity analysis of MI-RFGSM, MI-RFGSM,
MI-FGSM, and PGD under varying the number of steps (m)
in Attack Success Rate (ASR) and Attack Execution Time
(AET). (a)ASR of targeted attack under no defense for DQN
playing Pong. (b) ASR of targeted attack under defense for
RADIAL-DQN playing BankHeist. (c)ASR of targeted at-
tack under defense for RADIAL-DQN playing RoadRunner.
(d)AET of targeted attack for DQN playing Pong

we observe that AET clearly increases linearly as m in-
creases under all perturbation methods. For CW, we varied
m = 5, 10, 15, 20, 50, 200, 500, and 1000 and found 1000
being optimal in ASR and AR.

Discussion and Future Work
Although our proposed MI-RFGSM is a combination of pre-
viously designed FGSM variants, yet, it proved to outper-
form all baseline attacks. For future work, we want to check
the performance of MI-RFGSM and CW against RADIAL-
PPO and RADIAL-DDPG, so we know whether RADIAL
can beat CW in continuous environments or not. Further-
more, we want to build a novel attack on top of CW that
would be faster and more robust than CW. As far as the
realistic analysis of MI-RFGSM is concerned, we included
white-box attack, which might not be considered as realistic.
But, it is known that we can easily convert white-box attacks
to black-box attacks using transfer-ability principles. Our at-
tack is scalable, which is always required in real word sce-
narios. Overall, we claim that our attack completely works
under realistic scenarios.

Conclusion
In this paper we proposed an efficient and robust perturba-
tion attack applicable in deep reinforcement learning (DRL)
environments, MI-RFGSM. Our validation procedures ap-
plied algorithms, applications, and metrics from previous,
referenced papers. We also incorporated the best preform-
ing perturbations from all the surveyed papers and intro-
duced several novel FGSM based perturbations. Our envi-
ronments were built from DQN, DDPG or PPO DRL al-



Perturbation
Method (steps)

Non-Targeted Targeted
Vanilla
DDPG

SA DDPG Vanilla
DDPG

SA DDPG

CW (1000) −112± 66 −1961± 442 −130± 80 336± 140
CW (20) −1430±1000 394± 63 −418± 475 762± 170

FGSM (1) 455± 171 2282± 415 −80± 73 1264± 35
MIFGSM (20) 458± 188 2320± 347 −84± 80 1213± 76

PGD (20) −799± 817 839± 31 −28± 56 1156± 101
I-RFGSM (20) −45± 26 816± 75 −20± 45 1210± 55

MI-RFGSM (20) −199± 243 871± 115 −99± 73 1216± 81

Table 12: Comparison of Targeted Perturbation Methods on DDPG in Average Reward (AR) for Ant.

Perturbation method (steps) No Defense
PPO

Defense with
SA-PPO

Defense with
ATLA-PPO

CW (1000) −699± 810 527± 265 207± 151
CW (20) −142.9± 224.9 1684.7± 846.7 1596± 693
PGD (20) 744.95± 4.0 886.6± 1.23 856.2± 2.7

MI-FGSM (20) 751.5± 9.9 889.1± 4.7 855.3± 2.2
FGSM (1) 742.12± 12.3 886.99± 1.5 855.9± 1.87

Robust Sarsa 900± 444 4171± 56 4722± 469
MAD Attack 2009± 311 4284± 165 5183± 96

MI-RFGSM (20) 748.6± 10.5 889.1± 4.7 854.4± 1.9
I-RFGSM (20) 747.43± 13.2 886.6± 1.23 858.4± 2.3

Table 13: Comparison of Non-targeted Perturbation Methods in Average Reward (AR) for Ant. 5687 is the highest achieved
average reward for Vanilla PPO under no attack

gorithms operated on Atari Pong, RoadRunner, BankHeist,
and MuJoCo Ant and Hopper. Our evaluation of success rate
metrics within continuous action spaces shows MAE as both
a valid metric as well as a strong metric to create more spe-
cific variations of such as Attack Sensitivity and Binned Suc-
cess Rate. We validated MI-RFGSMs performance by com-
paring it with the state-of-the-art attack algorithms in attack
execution time (AET), and average reward (AR), discrete
attack success rate (ASR), and novel continuous attack suc-
cess rate metrics. We obtained the following key findings
from our study: (1) FGSM-based perturbation methods out-
perform CW attack in ASR and AR under defense in dis-
crete DRL; (2) The proposed MI-RFGSM showed the most
robust, scalable, and effective perturbation attacks among
all compared state-of-the-art schemes in Discrete environ-
ments played by DQN; (3) The proposed MI-RFGSM per-
formed six to nine times faster than state-of-the-art CW at-
tack, with better discrete ASR under the defense. In ad-
dition, MI-RFGSM outperformed PGD, the best baseline,
in ASR under defense and AET while showing compara-
ble AR to PGD; (4) CW outperformed FGSM variants un-
der continuous environments and defenses such as SA and
ATLA. However, this research shows that CW shows no ro-
bustness against RADIAL defense, whereas our proposed
MI-RFGSM outperformed against RADIAL, SA and ATLA,
proving its robustness. Overall, MI-RFGSM is robust and
fast in both discrete and continuous environments.
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Tramèr, F.; Kurakin, A.; Papernot, N.; Goodfellow, I.;
Boneh, D.; and McDaniel, P. 2017. Ensemble adver-
sarial training: Attacks and defenses. arXiv preprint
arXiv:1705.07204.
Xie, C.; Zhang, Z.; Zhou, Y.; Bai, S.; Wang, J.; Ren, Z.;
and Yuille, A. L. 2019. Improving transferability of ad-
versarial examples with input diversity. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2730–2739.
Yoon, S.; Cho, J.-H.; Dixit, G.; and Chen, R. 2021a.
Resource-Aware Intrusion Response Based on Deep Re-
inforcement Learning for Software-Defined Internet-of-
Battle-Things. Game Theory and Machine Learning for Cy-
ber Security.
Yoon, S.; Cho, J.-H.; Kim, D. S.; Moore, T. J.; Free-Nelson,
F.; and Lim, H. 2021b. DESOLATER: Deep Reinforcement
Learning-Based Resource Allocation and Moving Target
Defense Deployment Framework. IEEE Access, 9: 70700–
70714.
Yuan, X.; He, P.; Zhu, Q.; and Li, X. 2019. Adversarial
Examples: Attacks and Defenses for Deep Learning. IEEE
Transactions on Neural Networks and Learning Systems,
30(9): 2805–2824.
Zhang, H.; Chen, H.; Boning, D.; and Hsieh, C.-J.
2021. Robust Reinforcement Learning on State Obser-
vations with Learned Optimal Adversary. arXiv preprint
arXiv:2101.08452.
Zhang, H.; Chen, H.; Xiao, C.; Li, B.; Liu, M.; Boning, D.;
and Hsieh, C.-J. 2020. Robust deep reinforcement learn-
ing against adversarial perturbations on state observations.
arXiv preprint arXiv:2003.08938.

Appendix A



Perturbation
Method (steps)

MAE Attack Sensitivity Bin 1.0 BSR Bin 0.1 BSR
Vanilla SA Vanilla SA Vanilla SA Vanilla SA

CW (1000) 1.4730 ±
0.1765

0.9389 ±
0.1222

−0.1650 ±
0.0534

0.0313 ±
0.0594

87.57% 39.35% 99.28% 99.72%

CW (20) 0.9314 ±
0.2356

0.3912 ±
0.1661

0.0459 ±
0.1179

0.4427 ±
0.1734

45.88% 5.43% 93.71% 83.06%

FGSM (1) 0.2186 ±
0.1491

0.0940 ±
0.0442

0.7629 ±
0.3112

1.0845 ±
0.2448

1.64% 0% 60.27% 36.99%

MIFGSM (20) 0.2324 ±
0.1564

0.0947 ±
0.0439

0.7384 ±
0.3199

1.0784 ±
0.2353

2.01% 0% 61.82% 37.25%

PGD (20) 1.1533 ±
0.2036

0.3698 ±
0.06423

−0.0550 ±
0.0784

0.4461 ±
0.0811

63.80% 0.72% 97.13% 85.18%

I-RFGSM (20) 1.1938 ±
0.1974

0.2955 ±
0.0847

−0.0708 ±
0.0735

0.4966 ±
0.1241

66.58% 0.47% 96.82% 82.54%

MI-RFGSM
(20)

1.1643 ±
0.2114

0.2955 ±
0.0856

−0.0586 ±
0.0813

0.5486 ±
0.1330

63.67% 0.27% 96.91% 79.82%

Table 14: Comparison Of Non-Targeted Attacks on DDPG in MAE, AS, BSR.
Perturbation

Method (steps)
MAE Attack Sensitivity Bin 1.0 BSR Bin 0.1 BSR

Vanilla SA Vanilla SA Vanilla SA Vanilla SA
CW (1000) 0.0826 ±

0.0362
0.2101 ±
0.0702

1.1141 ±
0.1596

0.7039 ±
0.1571

99.99% 100% 68.42%1 29.07%

CW (20) 0.5414 ±
0.1361

0.4344 ±
0.4344

0.2808 ±
0.1138

0.3756 ±
0.1110

84.82% 96.60% 12.85% 12.90%

FGSM (1) 0.4410 ±
0.4410

0.4848 ±
0.1098

0.3752 ±
0.1326

0.3263 ±
0.1039

91.79% 95.69% 15.75% 10.70%

MIFGSM (20) 0.0910 ±
0.0518

0.3850 ±
0.1057

1.1014 ±
0.2280

0.4326 ±
0.1302

99.99% 99.35% 66.52% 14.29%

PGD (20) 0.1424 ±
0.05428

0.3737 ±
0.1039

0.8753 ±
0.1575

0.4462 ±
0.1332

99.97% 99.58% 42.80% 14.66%

I-RFGSM (20) 0.1343 ±
0.0525

0.3773 ±
0.1050

0.9019 ±
0.1606

0.4421 ±
0.1329

99.98% 99.55% 45.40% 14.58%

MI-RFGSM
(20)

0.0870 ±
0.0504

0.3820 ±
0.1050

1.1213 ±
0.2280

0.4362 ±
0.1316

99.99% 99.42% 68.62% 14.36%

Table 15: Comparison Of Targeted Attacks on DDPG.

Perturbation method (steps) No Defense PPO
(0.2)

No Defense PPO
(0.3)

Defense with
SA-PPO (0.2)

Defense with
SA-PPO (0.3)

Defense with
ATLA-PPO (0.2)

Defense with
ATLA-PPO (0.3)

CW (1000) 100% 100% 88% 77% 88% 56%
CW (20) 100% 94% 13% 2% 54% 7%
PGD (20) 99% 91% 99% 0% 93% 15%

MI-FGSM (20) 99% 93% 99% 0% 93% 16%
FGSM (1) 99% 90% 99% 0% 92% 8%

MI-RFGSM (20) 99% 92% 99% 0% 92% 23 %
I-RFGSM (20) 99% 93% 99% 0% 94% 13%

Table 16: Comparison of Non-targeted Perturbation Methods in Binned Success Rate for Ant.

Perturbation
Method (steps)

Non-Targeted Targeted
Vanilla DDPG SA DDPG Vanilla DDPG SA DDPG

CW (1000) 492± 160 393± 123 332± 131 387± 106
CW (20) 6.6± 1.8 6.2± 1.1 5.5± 0.9 5.6± 0.5

FGSM (1) 1.0± 0.1 1.2± 0.5 1.0± 0.1 1.0± 0.3
MIFGSM (20) 20.7± 2.4 20.5± 1.6 20.3± 0.8 21.9± 1.1

PGD (20) 18.3± 0.6 19.2± 1.0 18.7± 0.9 19.9± 0.8
I-RFGSM (20) 24.6± 3.0 19.0± 0.9 19.2± 0.8 20.0± 0.7

MI-RFGSM (20) 26.2± 3.5 20.2± 1.2 20.6± 1.0 21.4± 1.3

Table 17: Comparison of Targeted Perturbation Methods on DDPG in Attack Execution Time (AET) for Ant.

Perturbation method (steps) No Defense
PPO Targeted

Defense with
SA-PPO
Targeted

Defense with
ATLA-PPO

Targeted
CW (1000) 3± 1 0± 0 2± 0

CW (20) 5± 2 129± 119 3± 1
PGD (20) 4± 0 193± 1 196± 59

MI-FGSM (20) 4± 0 193± 1 213± 37
FGSM (1) 4± 0 192± 1 229± 12

MAD Attack 1576± 483 3324± 675 1681± 628
MR-RFGSM (20) 4± 0 193± 1 205± 43

RFGSM (20) 4± 0 193± 1 196± 56

Table 18: Comparison of targeted attacks on PPO in Average Reward (AR) for Hopper.



Paper Algorithm Applications Metrics
A3C DQN DDPG PPO TRPO Atari MuJoCo Average

Return
Attack
Execu-

tion Time

Success
Rate

Continuous
Success

Rate
Sun et al.

(2020)
✓ × ✓ ✓ × ✓ ✓ ✓ × × ×

Lin et al.
(2017)

✓ ✓ × × × ✓ × ✓ × ✓ ×

Behzadan and
Munir (2017)

× ✓ × × × ✓ × ✓ × ✓ ×

Huang et al.
(2017)

✓ ✓ × × ✓ ✓ × ✓ × × ×

Pattanaik
et al. (2017)

✓ × ✓ ✓ × ✓ ✓ ✓ × × ×

Kos and Song
(2017)

✓ × × × × ✓ × ✓ × × ×

Our Attack × ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓

Table 19: Comparison of Deep Reinforcement Learning within Papers

Paper Perturbations Settings
C&W FGSM JSMA GB Random

Noise
MI-

RFGSM
RFGSM Robust

Sarsa
MAD PGD MIFGSM DIFGSM White

Box
Black
Box

Sun et al.
(2020)

✓ × × × × × × × × × × × ✓ ×

Lin et al.
(2017)

✓ × × × × × × × × × × × ✓ ×

Behzadan
and

Munir
(2017)

× ✓ ✓ × × × × × × × × × ✓ ✓

Huang
et al.

(2017)

× ✓ × × × × × × × × × × ✓ ✓

Pattanaik
et al.

(2017)

× × × ✓ × × × × × × × × ✓ ×

Kos and
Song

(2017)

× ✓ × × ✓ × × × × × × × ✓ ×

Our
Attack

✓ ✓ × × × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ×

Table 20: Comparison of Deep Reinforcement Learning Attacks within Papers
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